Rational approximations to fractional powers of self-adjoint positive operators
نویسندگان
چکیده
منابع مشابه
Approximations of Strongly Continuous Families of Unbounded Self-Adjoint Operators
The problem of approximating the discrete spectra of families of self-adjoint operators that are merely strongly continuous is addressed. It is well-known that the spectrum need not vary continuously (as a set) under strong perturbations. However, it is shown that under an additional compactness assumption the spectrum does vary continuously, and a family of symmetric finite-dimensional approxi...
متن کاملOn Eigenfunction Approximations for Typical Non-self-adjoint Schrödinger Operators
We construct efficient approximations for the eigenfunctions of non-selfadjoint Schrödinger operators in one dimension. The same ideas also apply to the study of resonances of self-adjoint Schrödinger operators which have dilation analytic potentials. In spite of the fact that such eigenfunctions can have surprisingly complicated structures with multiple local maxima, we show that a suitable ad...
متن کاملAdjoint Fractional Differential Expressions and Operators
In this article we present the notions of adjoint differential expressions for fractional-order differential expressions, adjoint boundary conditions for fractional differential equations, and adjoint fractional-order operators. These notions are based on new formulas obtained for various types of fractional derivatives. The introduced notions can be used in many fields of modelling and control...
متن کاملDiagonals of Self-adjoint Operators
The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We prove an extension of the latter result for positive trace-class operators on ...
متن کاملPositive approximations of the inverse of fractional powers of SPD M-matrices
This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2019
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-019-01048-4